3.189 \(\int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx\)

Optimal. Leaf size=49 \[ \frac{(1-i) \sqrt{a} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d} \]

[Out]

((1 - I)*Sqrt[a]*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.0667326, antiderivative size = 49, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.071, Rules used = {3544, 205} \[ \frac{(1-i) \sqrt{a} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[Tan[c + d*x]],x]

[Out]

((1 - I)*Sqrt[a]*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx &=-\frac{\left (2 i a^2\right ) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac{(1-i) \sqrt{a} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}\\ \end{align*}

Mathematica [F]  time = 1.01206, size = 0, normalized size = 0. \[ \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[Tan[c + d*x]],x]

[Out]

Integrate[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[Tan[c + d*x]], x]

________________________________________________________________________________________

Maple [B]  time = 0.059, size = 120, normalized size = 2.5 \begin{align*}{\frac{-{\frac{i}{2}}\sqrt{2}a}{d}\ln \left ({\frac{1}{\tan \left ( dx+c \right ) +i} \left ( 2\,\sqrt{2}\sqrt{-ia}\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }-ia+3\,a\tan \left ( dx+c \right ) \right ) } \right ) \sqrt{\tan \left ( dx+c \right ) }\sqrt{a \left ( 1+i\tan \left ( dx+c \right ) \right ) }{\frac{1}{\sqrt{-ia}}}{\frac{1}{\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(1/2),x)

[Out]

-1/2*I/d*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x
+c)+I))*a*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)/(-I*a)^(1/2)/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)

________________________________________________________________________________________

Maxima [B]  time = 2.09576, size = 512, normalized size = 10.45 \begin{align*} \frac{\sqrt{a}{\left (\left (2 i + 2\right ) \, \arctan \left ({\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac{1}{4}} \sin \left (\frac{1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), -\cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) - \cos \left (d x + c\right ),{\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac{1}{4}} \cos \left (\frac{1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), -\cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) - \sin \left (d x + c\right )\right ) + \left (i - 1\right ) \, \log \left (\cos \left (d x + c\right )^{2} + \sin \left (d x + c\right )^{2} + \sqrt{\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1}{\left (\cos \left (\frac{1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), -\cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )^{2} + \sin \left (\frac{1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), -\cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )^{2}\right )} - 2 \,{\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac{1}{4}}{\left (\cos \left (\frac{1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), -\cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) \sin \left (d x + c\right ) + \cos \left (d x + c\right ) \sin \left (\frac{1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), -\cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )\right )}\right )\right )}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/2*sqrt(a)*((2*I + 2)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/
2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)) - cos(d*x + c), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 -
 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)) - sin(d*x + c)) + (I
- 1)*log(cos(d*x + c)^2 + sin(d*x + c)^2 + sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) +
 1)*(cos(1/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*
x + 2*c) + 1))^2) - 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan
2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1))*sin(d*x + c) + cos(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2*c), -cos
(2*d*x + 2*c) + 1)))))/d

________________________________________________________________________________________

Fricas [B]  time = 2.25284, size = 639, normalized size = 13.04 \begin{align*} \frac{1}{2} \, \sqrt{-\frac{2 i \, a}{d^{2}}} \log \left ({\left (\sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (i \, d x + i \, c\right )} + d \sqrt{-\frac{2 i \, a}{d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}\right ) - \frac{1}{2} \, \sqrt{-\frac{2 i \, a}{d^{2}}} \log \left ({\left (\sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (i \, d x + i \, c\right )} - d \sqrt{-\frac{2 i \, a}{d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/2*sqrt(-2*I*a/d^2)*log((sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*
d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)*e^(I*d*x + I*c) + d*sqrt(-2*I*a/d^2)*e^(2*I*d*x + 2*I*c))*e^(-2*I
*d*x - 2*I*c)) - 1/2*sqrt(-2*I*a/d^2)*log((sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I
*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)*e^(I*d*x + I*c) - d*sqrt(-2*I*a/d^2)*e^(2*I*d*x
+ 2*I*c))*e^(-2*I*d*x - 2*I*c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a \left (i \tan{\left (c + d x \right )} + 1\right )}}{\sqrt{\tan{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))**(1/2)/tan(d*x+c)**(1/2),x)

[Out]

Integral(sqrt(a*(I*tan(c + d*x) + 1))/sqrt(tan(c + d*x)), x)

________________________________________________________________________________________

Giac [B]  time = 1.3419, size = 103, normalized size = 2.1 \begin{align*} -\frac{2 \, \sqrt{-2 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}} a \log \left (\sqrt{i \, a \tan \left (d x + c\right ) + a}\right )}{-\left (i - 1\right ) \,{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} + \left (3 i - 3\right ) \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a - \left (2 i - 2\right ) \, a^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(1/2),x, algorithm="giac")

[Out]

-2*sqrt(-2*(I*a*tan(d*x + c) + a)*a + 2*a^2)*a*log(sqrt(I*a*tan(d*x + c) + a))/(-(I - 1)*(I*a*tan(d*x + c) + a
)^2 + (3*I - 3)*(I*a*tan(d*x + c) + a)*a - (2*I - 2)*a^2)